Horses as a Crucial Part of One Health (2024)

1. World Health Organization One Health. [(accessed on 24 February 2020)]; Available online: https://www.who.int/features/qa/one-health/en/

2. World Health Organization Neglected Tropical Diseases. [(accessed on 24 February 2020)]; Available online: https://www.who.int/neglected_diseases/diseases/en/

3. Kilpatrick A.M., Randolph S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet. 2012;380:1946–1955. doi:10.1016/S0140-6736(12)61151-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Shanko K., Kemal J., Kenea D. A Review on Confronting Zoonoses: The Role of Veterinarian and Physician. J. Vet. Sci. Technol. 2015;6:1–7. doi:10.4172/2157-7579.1000221. [CrossRef] [Google Scholar]

5. Verma A.K., Prasad S.B., Rongpi T., Arjun J. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India. Int. J. Pharm. Pharm. Sci. 2014;6:593–600. [Google Scholar]

6. Beever E.A., Huntsinger L., Petersen S.L. Conservation challenges emerging from free-roaming horse management: A vexing social-ecological mismatch. Biol. Conserv. 2018;226:321–328. doi:10.1016/j.biocon.2018.07.015. [CrossRef] [Google Scholar]

7. Beever E.A., Herrick J.E. Effects of feral horses in Great Basin landscapes on soils and ants: Direct and indirect mechanisms. J. Arid Environ. 2006;66:96–112. doi:10.1016/j.jaridenv.2005.11.006. [CrossRef] [Google Scholar]

8. Ostermann-Kelm S.D., Atwill E.A., Rubin E.S., Hendrickson L.E., Boyce W.M. Impacts of feral horses on a desert environment. BMC Ecol. 2009;9:22. doi:10.1186/1472-6785-9-22. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Valdes-Correcher E., Sitters J., Wassen M., Brion N., Venterink H.O. Herbivore dung quality affects plant community diversity. Sci. Rep. 2019;9 doi:10.1038/s41598-019-42249-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Beever E.A., Brussard P.F. Community- and landscape-level responses of reptiles and small mammals to feral-horse grazing in the Great Basin. J. Arid Environ. 2004;59:271–297. doi:10.1016/j.jaridenv.2003.12.008. [CrossRef] [Google Scholar]

11. Cherubin R.C., Venn S.E., Driscoll D.A., Doherty T.S., Ritchie E.G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 2019;20:47–56. doi:10.1111/emr.12352. [CrossRef] [Google Scholar]

12. Ostermann-Kelm S., Atwill E.R., Rubin E.S., Jorgensen M.C., Boyce W.M. Interactions between feral horses and desert bighorn sheep at water. J. Mammal. 2008;89:459–466. doi:10.1644/07-MAMM-A-075R1.1. [CrossRef] [Google Scholar]

13. Perry N.D., Morey P., San Miguel G. Dominance of a Natural Water Source by Feral Horses. Southwest Nat. 2015;60:390–393. doi:10.1894/0038-4909-60.4.390. [CrossRef] [Google Scholar]

14. Zalba S.M., Cozzani N.C. The impact of feral horses on grassland bird communities in Argentina. Anim. Conserv. 2004;7:35–44. doi:10.1017/S1367943003001094. [CrossRef] [Google Scholar]

15. Vilstrup J.T., Seguin-Orlando A., Stiller M., Ginolhac A., Raghavan M., Nielsen S.C., Weinstock J., Froese D., Vasiliev S.K., Ovodov N.D., et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS ONE. 2013;8:e55950. doi:10.1371/journal.pone.0055950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Campbell J.E., Gibson D.J. The effect of seeds of exotic species transported via horse dung on vegetation along trail corridors. Plant Ecol. 2001;157:23–35. doi:10.1023/A:1013751615636. [CrossRef] [Google Scholar]

17. Lopez-Bao J.V., Sazatornil V., Llaneza L., Rodriguez A. Indirect Effects on Heathland Conservation and Wolf Persistence of Contradictory Policies that Threaten Traditional Free- Ranging Horse Husbandry. Conserv. Lett. 2013;6:448–455. doi:10.1111/conl.12014. [CrossRef] [Google Scholar]

18. Levin P.S., Ellis J., Petrik R., Hay M.E. Indirect effects of feral horses on estuarine communities. Conserv. Biol. 2002;16:1364–1371. doi:10.1046/j.1523-1739.2002.01167.x. [CrossRef] [Google Scholar]

19. Nimmo D.G., Miller K.K. Ecological and human dimensions of management of feral horses in Australia: A review. Wildl. Res. 2007;34:408–417. doi:10.1071/WR06102. [CrossRef] [Google Scholar]

20. Van den Berg M., Brown W.Y., Lee C., Hinch G.N. Browse-related behaviors of pastured horses in Australia: A survey. J. Vet. Behav. 2015;10:48–53. doi:10.1016/j.jveb.2014.11.001. [CrossRef] [Google Scholar]

21. Warmuth V., Eriksson A., Bower M.A., Barker G., Barrett E., Hanks B.K., Li S.C., Lomitashvili D., Ochir-Goryaeva M., Sizonov G.V., et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl. Acad. Sci. USA. 2012;109:8202–8206. doi:10.1073/pnas.1111122109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Gullone E. The Biophilia Hypothesis and Life in the 21st Century: Increasing Mental Health or Increasing Pathology? Happiness Stud. 2000;1:293–322. doi:10.1023/A:1010043827986. [CrossRef] [Google Scholar]

23. Barnard-Nguyen S., Breit M., Anderson K.A., Nielsen J. Pet Loss and Grief: Identifying At-risk Pet Owners during the Euthanasia Process. Anthrozoos. 2016;29:421–430. doi:10.1080/08927936.2016.1181362. [CrossRef] [Google Scholar]

24. Hausberger M., Roche H., Henry S., Visser E.K. A review of the human-horse relationship. Appl. Anim. Behav. Sci. 2008;109:1–24. doi:10.1016/j.applanim.2007.04.015. [CrossRef] [Google Scholar]

25. Pawshe M.D., Badhe S.R., Khedkar C.D., Pawshe R.D., Pundkar A.Y. Horse Meat. Encycl. Food Health. 2016;3:353–356. [Google Scholar]

26. Harris M. The Cultural Ecology of India’s Sacred Cattle. Curr. Anthropol. 1992;33:261–276. doi:10.1086/204026. [CrossRef] [Google Scholar]

27. Koenig H.G. Research on religion, spirituality, and mental health: A review. Can. J. Psychiatry. 2009;54:283–291. doi:10.1177/070674370905400502. [PubMed] [CrossRef] [Google Scholar]

28. Rebay-Salisbury R. Horses, Wagons, and Chariots. Oxford Handbooks Online. [(accessed on 24 February 2020)];2018 Available online: https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199696826.001.0001/oxfordhb-9780199696826-e-36

29. Fabech C., Näsman U. The Sösdala Horsem*n and the Equestrian Elite of Fifth Century Europe. Aarhus University Press; Aarhus, Denmark: 2017. [Google Scholar]

30. Bisdent “Epona.” Ancient History Encyclopedia. Last modified January 18, 2012. [(accessed on 24 February 2020)]; Available online: https://www.ancient.eu/article/153/

31. Eckardt F., Witte K. Horse-Rider Interaction: A New Method Based on Inertial Measurement Units. J. Equine Vet. Sci. 2017;55:1–8. doi:10.1016/j.jevs.2017.02.016. [CrossRef] [Google Scholar]

32. Williams J., Tabor G. Rider impacts on equitation. Appl. Anim. Behav. Sci. 2017;190:28–42. doi:10.1016/j.applanim.2017.02.019. [CrossRef] [Google Scholar]

33. Wennerstrand J., Johnston C., Roethlisberger-Holm K., Erichsen C., Eksell P., Drevemo S. Kinematic evaluation of the back in the sport horse with back pain. Equine Vet. J. 2004;36:707–711. doi:10.2746/0425164044848226. [PubMed] [CrossRef] [Google Scholar]

34. Kraft C.N., Urban N., Ilg A., Wallny T., Scharfstadt A., Jager M., Pennekamp P.H. [Influence of the riding discipline and riding intensity on the incidence of back pain in competitive horseback riders] Sportverletz Sportschaden. 2007;21:29–33. doi:10.1055/s-2007-963038. [PubMed] [CrossRef] [Google Scholar]

35. Von Borstel U.K., Visser E.K., Hall C. Indicators of stress in equitation. Appl. Anim. Behav. Sci. 2017;190:43–56. doi:10.1016/j.applanim.2017.02.018. [CrossRef] [Google Scholar]

36. Benda W., McGibbon N.H., Grant K.L. Improvements in muscle symmetry in children with cerebral palsy after equine-assisted therapy (hippotherapy) J. Altern. Complem. Med. 2003;9:817–825. doi:10.1089/107555303771952163. [PubMed] [CrossRef] [Google Scholar]

37. Zadnikar M., Kastrin A. Effects of hippotherapy and therapeutic horseback riding on postural control or balance in children with cerebral palsy: A meta-analysis. Dev. Med. Child Neurol. 2011;53:684–691. doi:10.1111/j.1469-8749.2011.03951.x. [PubMed] [CrossRef] [Google Scholar]

38. Silkwood-Sherer D., Warmbier H. Effects of hippotherapy on postural stability, in persons with multiple sclerosis: A pilot study. J. Neurol. Phys. 2007;31:77–84. doi:10.1097/NPT.0b013e31806769f7. [PubMed] [CrossRef] [Google Scholar]

39. Wollenweber V., Drache M., Schickendantz S., Gerber-Grote A., Schiller P., Pohlau D. Study of the effectiveness of hippotherapy on the symptoms of multiple sclerosis-Outline of a randomised controlled multicentre study (MS-HIPPO) Contemp. Clin. Trials Commun. 2016;3:6–11. doi:10.1016/j.conctc.2016.02.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Champagne D., Dugas C. Improving gross motor function and postural control with hippotherapy in children with Down syndrome: Case reports. Physiother. Theory Pract. 2010;26:564–571. doi:10.3109/09593981003623659. [PubMed] [CrossRef] [Google Scholar]

41. Ajzenman H.F., Standeven J.W., Shurtleff T.L. Effect of Hippotherapy on Motor Control, Adaptive Behaviors, and Participation in Children With Autism Spectrum Disorder: A Pilot Study. Am. J. Occup. Ther. 2013;67:653–663. doi:10.5014/ajot.2013.008383. [PubMed] [CrossRef] [Google Scholar]

42. Beinotti F., Christofoletti G., Correia N., Borges G. Effects of Horseback Riding Therapy on Quality of Life in Patients Post Stroke. Top. Stroke Rehabil. 2013;20:226–232. doi:10.1310/tsr2003-226. [PubMed] [CrossRef] [Google Scholar]

43. Sung Y.H., Kim C.J., Yu B.K., Kim K.M. A hippotherapy simulator is effective to shift weight bearing toward the affected side during gait in patients with stroke. NeuroRehabilitation. 2013;33:407–412. doi:10.3233/NRE-130971. [PubMed] [CrossRef] [Google Scholar]

44. Winchester P., Kendall K., Peters H., Sears N., Winkley T. The effect of therapeutic horseback riding on gross motor function and gait speed in children who are developmentally delayed. Phys. Occup. Pediatr. 2002;22:37–50. doi:10.1080/J006v22n03_04. [PubMed] [CrossRef] [Google Scholar]

45. Meregillano G. Hippotherapy. Phys. Med. Rehabil. Clin. N. Am. 2004;15:843–854. doi:10.1016/j.pmr.2004.02.002. [PubMed] [CrossRef] [Google Scholar]

46. Gabriels R.L., Pan Z., Dechant B., Agnew J.A., Brim N., Mesibov G. Randomized Controlled Trial of Therapeutic Horseback Riding in Children and Adolescents with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2015;54:541–549. doi:10.1016/j.jaac.2015.04.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Saraceno B., Barbui C. Poverty and mental illness. Can. J. Psychiatry. 1997;42:285–290. doi:10.1177/070674379704200306. [PubMed] [CrossRef] [Google Scholar]

48. Pritchard J., Upjohn M., Hirson T. Improving working equine welfare in ‘hardwin’ situations, where gains are difficult, expensive or marginal. PLoS ONE. 2018;13 doi:10.1371/journal.pone.0191950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Nigatu A., Abebaw Z. Socioeconomic impact of Epizootic Lymphangitis (EL) on horse- drawn Taxi business in central Ethiopia; Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre; New Delhi, India. 29 November–2 December 2010; pp. 83–86. [Google Scholar]

50. Chang C.R., Sapón M., Rodríguez D. Economic valuation of the impact of the working equine in the peten and chimaltenango communities in Guatemala; Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre; New Delhi, India. 29 November–2 December 2010; pp. 106–110. [Google Scholar]

51. Pritchard J. What role do working equids play in human livelihoods–and how well is this currently recognised?; Proceedings of the 7th International Colloquium on Working Equids; University of London, London, UK. 1–3 July 2014; pp. 2–6. [Google Scholar]

52. Walker-Okello A. Opportunities for NGOs involved with the draught sector to contribute to national livestock policy frameworks in developing countries; Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre; New Delhi, India. 29 November–2 December 2010; pp. 80–82. [Google Scholar]

53. Kumar R.S., Tomar R., Kumar P.R., Nath S., Murugan G., Ramesh S. Comparioson of different working equine communities: Their welfare and socio-economic status in Gwalior, India; Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre; New Delhi, India. 29 November–2 December 2010; pp. 96–99. [Google Scholar]

54. Kaufmann S.H.E. Remembering Emil von Behring: From Tetanus Treatment to Antibody Cooperation with Phagocytes. mBio. 2017;8 doi:10.1128/mBio.00117-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Morais J.F., Defreitas M.C.W., Yamaguchi I.K., Dossantos M.C., Dasilva W.D. Snake Antivenoms from Hyperimmunized Horses-Comparison of the Antivenom Activity and Biological Properties of Their Whole Igg and F(Ab’)(2) Fragments. Toxicon. 1994;32:725–734. doi:10.1016/0041-0101(94)90341-7. [PubMed] [CrossRef] [Google Scholar]

56. Maharana S., Behera T.R., Pattanaik N. Serum Sickness in Patients Receiving Equine Rabies Immunoglobulin. J. Commun. Dis. 2018;50:30–33. doi:10.24321/0019.5138.201811. [CrossRef] [Google Scholar]

57. Kojis F.G. Serum sickness and anaphylaxis: Analysis of cases of 6,211 patients treated with horse serum for various infections. Am. J. Dis. Child. 1942;14:101. doi:10.1016/S0021-8707(42)90281-8. [CrossRef] [Google Scholar]

58. Wilde H., Chomchey P., Punyaratabandhu P., Phanupak P., Chutivongse S. Purified Equine Rabies Immune Globulin-a Safe and Affordable Alternative to Human Rabies Immune Globulin. Bull. World Health Organ. 1989;67:731–736. [PMC free article] [PubMed] [Google Scholar]

59. Scheel T.K.H., Kapoor A., Nishiuchi E., Brock K.V., Yu Y.P., Andrus L., Gu M.G., Renshaw R.W., Dubovi E.J., McDonough S.P., et al. Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc. Natl. Acad. Sci. USA. 2015;112:2192–2197. doi:10.1073/pnas.1500265112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Tegtmeyer B., Echelmeyer J., Pfankuche V.M., Puff C., Todt D., Fischer N., Durham A., Feige K., Baumgartner W., Steinmann E., et al. Chronic equine hepacivirus infection in an adult gelding with severe hepatopathy. Vet. Med. Sci. 2019;5:372–378. doi:10.1002/vms3.181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Klier J., Bartl C., Geuder S., Geh K.J., Reese S., Goehring L.S., Winter G., Gehlen H. Immunomodulatory asthma therapy in the equine animal model: A dose-response study and evaluation of a long-term effect. Immun. Inflamm. Dis. 2019;7:130–149. doi:10.1002/iid3.252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Wilke M.M., Nydam D.V., Nixon A.J. Enhanced early Chondrogenesis in articular defects following arthroscopic mesenchymal stem celli implantation in an equine model. J. Orthop. Res. 2007;25:913–925. doi:10.1002/jor.20382. [PubMed] [CrossRef] [Google Scholar]

63. McIlwraith C.W., Fortier L.A., Frisbie D.D., Nixon A.J. Equine Models of Articular Cartilage Repair. Cartilage. 2011;2:317–326. doi:10.1177/1947603511406531. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Fureix C., Jego P., Henry S., Lansade L., Hausberger M. Towards an Ethological Animal Model of Depression? A Study on Horses. PLoS ONE. 2012;7 doi:10.1371/journal.pone.0039280. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kumar B., Manuja A., Gulati B.R., Virmani N., Tripathi B.N. Zoonotic Viral Diseases of Equines and Their Impact on Human and Animal Health. Open Virol. J. 2018;12:80–98. doi:10.2174/1874357901812010080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Reperant L.A., MacKenzie J., Osterhaus A. Periodic global One Health threats update. One Health. 2016;2:1–7. doi:10.1016/j.onehlt.2015.11.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Day M.J. One health: The importance of companion animal vector-borne diseases. Parasites Vectors. 2011;4:49. doi:10.1186/1756-3305-4-49. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Van der Kolk J.H. The equine species as Trojan horse for Borna Disease Virus-1? Vet. Quart. 2018;38:126–128. doi:10.1080/01652176.2019.1551172. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Nobach D., Bourg M., Herzog S., Lange-Herbst H., Encarnacao J.A., Eickmann M., Herden C. Shedding of Infectious Borna Disease Virus-1 in Living Bicolored White-Toothed Shrews. PLoS ONE. 2015:10. doi:10.1371/journal.pone.0137018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Weese J.S. A Review of Equine Zoonotic Diseases: Risks in Veterinary Medicine; Proceedings of the Annual Convention of the AAEP; Orlando, FL, USA. 4–8 December 2002; pp. 362–369. [Google Scholar]

71. Middleton D., Pallister J., Klein R., Feng Y.R., Haining J., Arkinstall R., Frazer L., Huang J.A., Edwards N., Wareing M., et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg. Infect. Dis. 2014;20:372–379. doi:10.3201/eid2003.131159. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Rupprecht C.E., Hanlon C.A., Hemachudha T. Rabies re-examined. Lancet Infect. Dis. 2002;2:327–343. doi:10.1016/S1473-3099(02)00287-6. [PubMed] [CrossRef] [Google Scholar]

73. Martella V., Banyai K., Matthijnssens J., Buonavoglia C., Ciarlet M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 2010;140:246–255. doi:10.1016/j.vetmic.2009.08.028. [PubMed] [CrossRef] [Google Scholar]

74. Shope R.E. Arbovirus-Related Encephalitis. Yale J. Biol. Med. 1980;53:93–99. [PMC free article] [PubMed] [Google Scholar]

75. Rozo-Lopez P., Drolet B.S., Londono-Renteria B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects. 2018:9. doi:10.3390/insects9040190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Nunamaker R.A., Perez De Leon A.A., Campbell C.L., Lonning S.M. Oral infection of Culicoides sonorensis (Diptera: Ceratopogonidae) by vesicular stomatitis virus. J. Med. Entomol. 2000;37:784–786. doi:10.1603/0022-2585-37.5.784. [PubMed] [CrossRef] [Google Scholar]

77. Campbell G.L., Marfin A.A., Lanciotti R.S., Gubler D.J. West Nile virus. Lancet Infect. Dis. 2002;2:519–529. doi:10.1016/S1473-3099(02)00368-7. [PubMed] [CrossRef] [Google Scholar]

78. Uehlinger F.D., Clancey N.P., Lofstedt J. Granulocytic anaplasmosis in a horse from Nova Scotia caused by infection with Anaplasma phagocytophilum. Can. Vet. J. 2011;52:537–540. [PMC free article] [PubMed] [Google Scholar]

79. Gajardo G., Uberti B., Paredes E. Anthrax in a horse and post-exposure interventions. J. Equine Vet. Sci. 2016;39:37–38. doi:10.1016/j.jevs.2016.02.083. [CrossRef] [Google Scholar]

80. Schuch R., Fischetti V.A. The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations. PLoS ONE. 2009:4. doi:10.1371/journal.pone.0006532. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Johnson A.L., McAdams-Gallagher S.C., Aceto H. Accuracy of a Mouse Bioassay for the Diagnosis of Botulism in Horses. J. Vet. Intern. Med. 2016;30:1293–1299. doi:10.1111/jvim.13950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Njoga E.O., Onunkwo J.I., Ekere S.O., Njoga U.J., Okoro W.N. Seroepidemiology of Equine Brucellosis and Role of Horse Carcass Processors in Spread of Brucella Infection in Enugu State, Nigeria. Int. J. Curr. Res. Rev. 2018;10:39–45. doi:10.31782/IJCRR.2018.10106. [CrossRef] [Google Scholar]

83. Pappas G. The changing Brucella ecology: Novel reservoirs, new threats. Int. J. Antimicrob. Agents. 2010;36(Suppl. 1):S8–S11. doi:10.1016/j.ijantimicag.2010.06.013. [PubMed] [CrossRef] [Google Scholar]

84. Knight D.R., Riley T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health. 2019;7 doi:10.3389/fpubh.2019.00164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Van Zandt K.E., Greer M.T., Gelhaus H.C. Glanders: An overview of infection in humans. Orphanet J. Rare Dis. 2013;8 doi:10.1186/1750-1172-8-131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Khan I., Wieler L.H., Melzer F., Elschner M.C., Muhammad G., Ali S., Sprague L.D., Neubauer H., Saqib M. Glanders in Animals: A Review on Epidemiology, Clinical Presentation, Diagnosis and Countermeasures. Transbound. Emerg. Dis. 2013;60:204–221. doi:10.1111/j.1865-1682.2012.01342.x. [PubMed] [CrossRef] [Google Scholar]

87. Adler B., Moctezuma A.D. Leprospira and leptospirosis. Vet. Microbiol. 2010;140:287–296. doi:10.1016/j.vetmic.2009.03.012. [PubMed] [CrossRef] [Google Scholar]

88. Lehmann B., Straubinger R.K., Gehlen H. Borreliose beim Pferd – Eine Literaturstudie unter Berücksichtigung aktueller Diagnose und Therapieverfahren sowie Präventionsmaßnahmen. Pferdeheilkunde–Equine Med. 2017;33:363–370. doi:10.21836/PEM20170406. [CrossRef] [Google Scholar]

89. Kaspar U., von Lutzau K., Schlattmann A., Rosler U., Kock R., Becker K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health. 2019;7:1–6. doi:10.1016/j.onehlt.2019.100091. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Vazquez-Boland J.A., Giguere S., Hapeshi A., MacArthur I., Anastasi E., Valero-Rello A. Rhodococcus equi: The many facets of a pathogenic actinomycete. Vet. Microbiol. 2013;167:9–33. doi:10.1016/j.vetmic.2013.06.016. [PubMed] [CrossRef] [Google Scholar]

91. Cummings K.J., Perkins G.A., Khatibzadeh S.M., Warnick L.D., Aprea V.A., Altier C. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001-2013) Am. J. Vet. Res. 2016;77:505–513. doi:10.2460/ajvr.77.5.505. [PubMed] [CrossRef] [Google Scholar]

92. Khurana S.K., Dhama K., Prasad M., Karthik K., Tiwari R. Zoonotic Pathogens Transmitted from Equines: Diagnosis and Control. Adv. Anim. Vet. Sci. 2015;3:32–53. doi:10.14737/journal.aavs/2015/3.2s.32.53. [CrossRef] [Google Scholar]

93. Pelkonen S., Lindahl S.B., Suomala P., Karhukorpi J., Vuorinen S., Koivula I., Vaisanen T., Pentikainen J., Autio T., Tuuminen T. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg. Infect. Dis. 2013;19:1041–1048. doi:10.3201/eid1907.121365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Ribeiro M.G., de Nardi G., Megid J., Franco M.M.J., Guerra S.T., Portilho F.V.R., Rodrigues S.A., Paes A.C. Tetanus in horses: An overview of 70 cases. Pesqui Vet Bras. 2018;38:285–293. doi:10.1590/1678-5150-pvb-5441. [CrossRef] [Google Scholar]

95. Mukarim A., Dechassa T., Mahendra P. Equine Bacterial and Viral Zoonosis: A Systematic Review. Austin J. Trop. Med. Hyg. 2015;1:1–6. [Google Scholar]

96. Burton A.J., Nydam D.V., Dearen T.K., Mitchell K., Bowman D.D., Xiao L. The prevalence of Cryptosporidium, and identification of the Cryptosporidium horse genotype in foals in New York State. Vet. Parasitol. 2010;174:139–144. doi:10.1016/j.vetpar.2010.08.019. [PubMed] [CrossRef] [Google Scholar]

97. Demircan K., Onder Z., Duzlu O., Yildirim A., Okur M., Ciloglu A., Yetismis G., Inci A. First Molecular Detection and Phylogenetic Analyses of Zoonotic Giardia intestinalis in Horses in Turkey. J. Equine Vet. Sci. 2019;80:56–60. doi:10.1016/j.jevs.2019.06.017. [PubMed] [CrossRef] [Google Scholar]

98. Adam R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 2001;14:447–475. doi:10.1128/CMR.14.3.447-475.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Venturi S.S., da Silva A.F., Frazao-Teixeira E., de Oliveira F.C.R., Consalter A., Padilha F.G.F., Fonseca A.B.M., Ferreira A.M.R. Characterization of the zoonotic potential of Toxoplasma gondii in horses from Rio de Janeiro State. Acta Trop. 2017;171:159–162. doi:10.1016/j.actatropica.2017.03.036. [PubMed] [CrossRef] [Google Scholar]

100. Sofronic-Milosavljevic L., Pozio E., Patrascu I.V., Skerovic N., Gomez Morales M.A., Gamble H.R. Immunodiagnosis of Trichinella infection in the horse. Parasite. 2001;8:S260–S262. doi:10.1051/parasite/200108s2260. [PubMed] [CrossRef] [Google Scholar]

101. Pozio E., Hoberg E., La Rosa G., Zarlenga D.S. Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect. Genet. Evol. 2009;9:606–616. doi:10.1016/j.meegid.2009.03.003. [PubMed] [CrossRef] [Google Scholar]

102. Maurice M.N., Kazeem H.M., Kwanashie C.N., Maurice N.A., Ngbede E.O., Adamu H.N., Mshelia W.P., Edeh R.E. Equine Dermatophytosis: A Survey of Its Occurrence and Species Distribution among Horses in Kaduna State, Nigeria. Scientifica. 2016;2016:1–7. doi:10.1155/2016/6280646. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. World Health Organization Noncommunicable Diseases. [(accessed on 24 February 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

104. Reesink H.L., Nixon A.J., Su J., Liu S., Sutton R.M., Mann S., Watts A.E., Peterson R.P. Galectins-1 and-3 Increase in Equine Post-traumatic Osteoarthritis. Front Vet. Sci. 2018;5:288. doi:10.3389/fvets.2018.00288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Cooper J.J., Albentosa M.J. Behavioural adaptation in the domestic horse: Potential role of apparently abnormal responses including stereotypic behaviour. Livest Prod. Sci. 2005;92:177–182. doi:10.1016/j.livprodsci.2004.11.017. [CrossRef] [Google Scholar]

106. Waters A.J., Nicol C.J., French N.P. Factors influencing the development of stereotypic and redirected behaviours in young horses: Findings of a four year prospective epidemiological study. Equine Vet. J. 2002;34:572–579. doi:10.2746/042516402776180241. [PubMed] [CrossRef] [Google Scholar]

107. McAfee L.M., Mills D.S., Cooper J.J. The use of mirrors for the control of stereotypic weaving behaviour in the stabled horse. Appl. Anim. Behav. Sci. 2002;78:159–173. doi:10.1016/S0168-1591(02)00086-2. [CrossRef] [Google Scholar]

108. Mcgreevy P.D., French N.P., Nicol C.J. The Prevalence of Abnormal Behaviors in Dressage, Eventing and Endurance Horses in Relation to Stabling. Vet. Rec. 1995;137:36–37. doi:10.1136/vr.137.2.36. [PubMed] [CrossRef] [Google Scholar]

109. Morgan R., Keen J., McGowan C. Equine metabolic syndrome. Vet. Rec. 2015;177:173–179. doi:10.1136/vr.103226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Saastamoinen M., Sarkijarvi S., Hyyppa S. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials. Animals. 2015;5:965–977. doi:10.3390/ani5040394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Elfman L., Riihimaki M., Pringle J., Walinder R. Influence of horse stable environment on human airways. J. Occup. Med. Toxicol. 2009;4:10. doi:10.1186/1745-6673-4-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Diseases A-Z: Horses. [(accessed on 24 February 2020)]; Available online: https://www.petmd.com/horse/conditions

113. Webster A.J. Farm animal welfare: The five freedoms and the free market. Vet. J. 2001;161:229–237. doi:10.1053/tvjl.2000.0563. [PubMed] [CrossRef] [Google Scholar]

114. Kraft C.N., Pennekamp P.H., Becker U., Young M., Diedrich O., Luring C., von Falkenhausen M. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: Correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am. J. Sports Med. 2009;37:2205–2213. doi:10.1177/0363546509336927. [PubMed] [CrossRef] [Google Scholar]

115. Assembly U.G. Transforming Our World: The 2030 Agenda for Sustainable Development. [(accessed on 24 February 2020)]; Available online: https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf

116. Patz J.A., Hahn M.B. Climate Change and Human Health: A One Health Approach. Curr. Top. Microbiol. 2013;366:141–171. doi:10.1007/82_2012_274. [PubMed] [CrossRef] [Google Scholar]

117. De la Roque S., Rioux J.A., Slingenbergh J. Climate change: Effects on animal disease systems and implications for surveillance and control. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2008;27:339–354. doi:10.20506/rst.27.2.1807. [PubMed] [CrossRef] [Google Scholar]

118. Battisti D.S., Naylor R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science. 2009;323:240–244. doi:10.1126/science.1164363. [PubMed] [CrossRef] [Google Scholar]

119. Toreti A., Bassu S., Ceglar A., Zampieri M. Climte Change and Crop Yields. Encycl. Food Secur. Sustain. 2018;1:223–227. doi:10.1016/B978-0-08-100596-5.22010-6. [CrossRef] [Google Scholar]

120. Gilbert M., Slingenbergh J., Xiao X. Climate change and avian influenza. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2008;27:459–466. doi:10.20506/rst.27.2.1821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Hamer S.A., Goldberg T.L., Kitron U.D., Brawn J.D., Anderson T.K., Loss S.R., Walker E.D., Hamer G.L. Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005-2010. Emerg. Infect. Dis. 2012;18:1589–1595. doi:10.3201/eid1810.120511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Reed K.D., Meece J.K., Henkel J.S., Shukla S.K. Birds, migration and emerging zoonoses: West nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003;1:5–12. doi:10.3121/cmr.1.1.5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Swetnam D., Widen S.G., Wood T.G., Reyna M., Wilkerson L., Debboun M., Symonds D.A., Mead D.G., Beaty B.J., Guzman H., et al. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg. Infect. Dis. 2018;24:2184–2194. doi:10.3201/eid2412.180382. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Zoller L., Faulde M., Meisel H., Ruh B., Kimmig P., Schelling U., Zeier M., Kulzer P., Becker C., Roggendort M., et al. Seroprevalence of Hantavirus Antibodies in Germany as Determined by a New Recombinant Enzyme-Immunoassay. Eur. J. Clin. Microbiol. 1995;14:305–313. doi:10.1007/BF02116523. [PubMed] [CrossRef] [Google Scholar]

125. Frumkin H., Haines A. Global Environmental Change and Noncommunicable Disease Risks. Annu. Rev. Public Health. 2019;40:261–282. doi:10.1146/annurev-publhealth-040218-043706. [PubMed] [CrossRef] [Google Scholar]

126. Friel S., Bowen K., Campbell-Lendrum D., Frumkin H., McMichael A.J., Rasanathan K. Climate Change, Noncommunicable Diseases, and Development: The Relationships and Common Policy Opportunities. Annu. Rev. Public Health. 2011;32:133–147. doi:10.1146/annurev-publhealth-071910-140612. [PubMed] [CrossRef] [Google Scholar]

127. Starr M.P., Reynolds D.M. Streptomycin Resistance of Coliform Bacteria from Turkeys Fed Streptomycin. Am. J. Public Health. 1951;41:1375–1380. doi:10.2105/AJPH.41.11_Pt_1.1375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Argudin M.A., Deplano A., Meghraoui A., Dodemont M., Heinrichs A., Denis O., Nonhoff C., Roisin S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics. 2017;6 doi:10.3390/antibiotics6020012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Harbarth S., Balkhy H.H., Goossens H., Jarlier V., Kluytmans J., Laxminarayan R., Saam M., Van Belkum A., Pittet D., Healthcare-Associated W. Antimicrobial resistance: One world, one fight! Antimicrob. Resist. Infect. Control. 2015;4 doi:10.1186/s13756-015-0091-2. [CrossRef] [Google Scholar]

130. Mathew A.G., Cissell R., Liamthong S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007;4:115–133. doi:10.1089/fpd.2006.0066. [PubMed] [CrossRef] [Google Scholar]

131. Ungemach F.R., Mueller-Bahrdt D., Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int. J. Med. Microbiol. 2006;296:33–38. doi:10.1016/j.ijmm.2006.01.059. [PubMed] [CrossRef] [Google Scholar]

132. Maddox T.W., Clegg P.D., Williams N.J., Pinchbeck G.L. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet. J. 2015;47:756–765. doi:10.1111/evj.12471. [PubMed] [CrossRef] [Google Scholar]

133. Cuny C., Friedrich A., Kozytska S., Layer F., Nubel U., Ohlsen K., Strommenger B., Walther B., Wieler L., Witte W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 2010;300:109–117. doi:10.1016/j.ijmm.2009.11.002. [PubMed] [CrossRef] [Google Scholar]

134. Cuny C., Abdelbary M.M.H., Kock R., Layer F., Scheidemann W., Werner G., Witte W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health. 2016;2:11–17. doi:10.1016/j.onehlt.2015.11.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Van Duijkeren E., ten Horn L., Wagenaar J.A., de Bruijn M., Laarhoven L., Verstappen K., de Weerd W., Meessen N., Duim B. Suspected Horse-to-Human Transmission of MRSA ST398. Emerg. Infect. Dis. 2011;17:1137–1139. doi:10.3201/eid1706.101330. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Ward M.P., Brady T.H., Couetil L.L., Liljebjelke K., Maurer J.J., Wu C.C. Investigation and control of an outbreak of salmonellosis caused by multidrug-resistant Salmonella typhimurium in a population of hospitalized horses. Vet. Microbiol. 2005;107:233–240. doi:10.1016/j.vetmic.2005.01.019. [PubMed] [CrossRef] [Google Scholar]

137. Isgren C. Antimicrobial resistance in horses. Vet. Rec. 2018;183:316–318. doi:10.1136/vr.k3909. [PubMed] [CrossRef] [Google Scholar]

138. Kooijman L.J., James K., Mapes S.M., Theelen M.J., Pusterla N. Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA. Vet. J. 2017;220:91–94. doi:10.1016/j.tvjl.2017.01.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Menachery V.D., Graham R.L., Baric R.S. Jumping species-a mechanism for coronavirus persistence and survival. Curr. Opin. Virol. 2017;23:1–7. doi:10.1016/j.coviro.2017.01.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Horses as a Crucial Part of One Health (2024)
Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6191

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.